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ON FREE PERTURBATIONS IN HYPERSONIC LAMMAR FtOW BEHIND A PROFILE* 

S.V. MANUILOVICH 

Plane-parallel laminar hypersonic flow at large distances behind a wing 
of infinite span is considered. Non-symmetric free perturbations in the 
basic flow, described in terms of a blast analogy, are studied. The motion 
of the gas obeys the Navier-Stokes equations and is specified using two- 
term asymptotic representations. The symmetric and antisymmetric perturba- 
tions of the blast solution have an oscillatory form, with amplitude and 
frequency decaying in the downstream direction. 

1. Formulation of the problem. We shall study a plane parallel flow of a hypersonic 
pm = 0 real gas past a profile. The viscosity h and thermal conductivity k are assumed to 
be proportional to the specific enthalpy , and we denote the corresponding proportionality 
coefficients by lie, ko. The ratio x of the specific heats C, and cvwi.11 be assumed to be 
constant and to satisfy the inequality i <x< 2. We shall use the density p_ oftheincoming 

flow, its velocity u, and the coefficient k.D as the basic unit measures. The Prandtl 
number Pr == C&elk,. 

We introduce the notation 1 fur, up for the components of the velocity vector along the 
z, y axes of a Cartesian system of coordinates whose origin coincides with the streamlined 
profile whose abscissa axis coincides with the direction of the incoming flow. We denote the 

pressure, density and specific enthalpy by p, p, w respectively. In describing the motion 

of gas we shall use the system of Navier-Stokes equations and the Mises 2, Y variables. 

The principal terms of the asymptotic expansions 2+00 describing the laminar hyper- 

sonic flow of a viscous, heat conducting gas behind a body of finite dimensions, were obtained 
in /l/. The solution constructed there is symmetrical about the streamline %' = 0 andincludes 

*Prikl.Matem.Mekhn.,48,5,776-781, 1984 



two regions with essentially different properties, the outer flow and the laminar wake. The 

solution of /l/ holds only to a first approximation, and is, in fact, perturbed everywhere 

due to various physical factors such as heat emission or the injection of gaseous mass from the 

surface of the streamlined body /2/, the action of lift /3/, etc. (in the case of an'inviscid 
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isentropic flow the perturbed blast solution can describe flow past a half-body /4/. In 
addition to these, perturbation of the basic solution /l/ can be caused by the specific 
properties of the hypersonic flow near a specific body. The perturbations, which are called 

free, satisfy the Rankine-Hugoniot conditions at the discontinuity and the matching conditions 
at the centre of the wake. The purpose of this paper is to construct such perturbations. 

Since the equations describing the flow to a second approximation are linear, it is 
convenient to separate the arbitrary perturbations of the basic flow into symmetric and anti- 
symmet;ic perturbations, and study them separately. We shall call symmetric the perturbations 
in which the correction terms in the expansions for u,,,u, p, w are even and for vyr Y are odd 

functions of the variable Y, otherwise we shall speak of antisymmetric perturbations (i.e. 
perturbations in which the corrections in the expansions of the first four parameters are odd 
functions, and of the last two are even functions of Y). 

We shall solve the problem of finding the free perturbations as an inverse problem, i.e. 
we shall specify a perturbation of the shock front belonging to some class of functions and 
construct the solution, and then determine the specific form of this perturbation using the 
symmetry conditions at the wake centre. 

2. Outer region. It was shown in /5/, while studying the problem of supersonic flow 
past a wedge with a weakly curved surface, that the flow is formed in the course of successive 
reflections of the perturbations from the shock wave and thesideof the wedge. As was shown 
in /6/, in a flow past a blunted wedge the perturbations decay when x-+00 as Re (C#), 
where &and z are complex constants. In this connection we shall seek, following /7/, the 
perturbations of the outer flow in the class of complex powers , specifying the form of the 
shock wave in terms of an expansion (henceforth, all expansions will be written for the half- 
plane Y> 0 and the sign of the real part Re in the correction terms will be omitted) 

y, = C& (1 + C,f + I . .) (2.1) 
We make the constant z obey the inequality -1 <Rep< 0 whose first part ensures the 

inviscid character of the flow intheouter region /8/, and the second part the decay of the 
perturbations as I+ 00. 

The outer expansions of the flow parameters corresponding to (2.1) are given by the 
formulas 

The quantities with indices 11 and 12 in these expansions are functions of the self- 
modelling variable q = Yx-W and the normalizing coefficients are found from the relations 

v, = V&r-‘~~ (l&l + c*z=v.& + . . .) 

vy = v@x-“8 (v& + c,xzv9*2 + . . .) 

P = Pox-” @ll + c,* PlS + . * . 1 
P = PO (Pll + a%* + . * .I 

(2.2) 

w = w,Jx-2’* (WI1 + c,zlwu,, + . . ~ ) 

Y = cl% (Yll + C,tiYl, + * * .) 

The first-approximation functionsare known by virtue 
sional isenergetic motion /9/, from the exact solution of 
in Lagrangian variables. 

Substituting (2.2) into the Navier-Stokes equations, 
second-approximation system: 

of the analogy with the one-dimen- 
the problem of strong explosion /lo/ 

we obtain the following linear 

The system of ordinary differential equations (2.3) is of second order, since the first 
two equations can yield another algebraic equation connecting the second-approximation func- 
tions. The Cauchy data for system (2.3) follow from the linearized Rankine-Hugoniot relations 
for the shock wave (2.1) 
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Pn(l)=3(2+7&+ &z(i)=2 
x+i 

Before constructing the solution in the region of the wake, we shall write the asymptotic 
expansions for the first and second approximation functions as q-+0 

Yll=Clq(x-l)‘~+ . . . . p11=p*1+ . ..) cl--h -11% 
x+1 (2.5) 

yl*~c*qz~+c”+ . . . . p12=CI)qZuf1+Cp+ . . . . 
w-1 +=-$+-ii_ 

61% - I)(2 f 1) -11% (X-+l)(3K-2) 
"= (~+1)(3xz+2x-2) h ’ CS=~x(3~+4~_22) ‘2 

Here pI1 is a constant known from the exact solution of the problem of strong explosion of 
a plane charge /IO/, and the constants c, (z, x) and cp (z, x) can be found by numerical integra- 
tion of problem (2.3), (2.4). 

3. Laminar wake. The outer expansions cease to hold in the neighbourhood of n = 0, 
since the gradients of the flow parameters are here so large, that the thermal conductivity 
and viscosity begin to play a decisive role. Following /l/ we substitute the asymptotic 
representations (2.5) into the expansions (2.2) and pass to the inner variable t - YSWC. 
As-a result we obtain the 

tl<CS>i 

asymptotic expansions of the flow parameters in the matching region 

The limit expansions (3.1) make it possible to determine the form of the inner expansions 

(3.1) 

describing the flow in the region of a lamlnar wake 

and also yield the asymptotic conditions of matching with the outer region (the indices 21, 
22 and 23 denote the functions of the selfsimilar variable 6). Substituting the inner expan- 
sions into the system of Navier-Stokes equations, we obtain the equations for the third- 
approximation functions dp,&~ = dy,,ld6 = 0 and this, taking the matching conditions Pss - 
cp + . . .I Y*a = qf + . . a, f-v 00 into account, yields 

Pas - cp* Y,, = cv (3.2) 

Next we write the asymptotic expansions for all the flow parameters, retaining only the 
correction terms of order a?/' (the values of z computed below show that these terms are 
higher than those deleted) 

uz=tl&&+-I~)~~(uX?I + C,Z'~"U,~ + . ..) 

% = v&J-~)~‘~ (VIP1 + C#~‘Up + . . .) 
p = poa7”‘p,1 + . , . 

p = PC’~ h-h1 + CzZ'fiP,, + * * l ) 
w = w@7P-~‘J~ (w*, f c,xwo,, + . . . ) 

y = C3++3)lex (y*1 + c,z*~y*? + . . . ) 

The first-approximation function first studibd in /l/, can be expressed in terms 
special functions /3/. The second-approximation functions satisfy the linear system 

(3.3) 

of 

(3.4) 

The solution of (3.4) must satisfy the symmetry conditions when 5 = 0, and the matching 

conditions as <+co. We note that the last two equations can be reduced, by replacing the 
variable f =- Pr ga/2K, to the canonical form of a degenerate hypergeometric equation /ll/. 
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4. Symmetric perturbations. Next we shall study the free perturbations in plane 

parallel hyerpsonic flow. Until now the constants c, and z were assumed to be arbitrary. The 

symmetry conditions enable us to find the constant 2. At the same time, the ampl.itude I?, of 

the perturbations in the asymptotic r--too formulation of the problem cannot be found. 
We shall begin by considering the problem of hyersonic flow past a symmetric profile at 

zero angle of attack. In this case the flow pattern will be symmetrical about the profile 

axis, and hence the perturbations describing how the flow behind the concrete profile differs, 
as r-00, from the solution of /l/, will also be symmetrical. After determining thesymmet- 

rical perturbations we obtain at once the conditions which must be satisfied by the functions 
of the second and third approximation in the region of the wake 

* (0)=u,,,(0)=~(0)=~(0),y,(0)=yrr(0)=0 (4.1) 

The last equations (4.1) and (3.21 together yield an equation for determining the complex 
constant z 

C# (2, x) = 0 (4.2) 

Equation (4.2) was encountered earlier /12/ in the course of investigating free perturba- 
tions of a one-dimensional unsteady flow of gas displaced by a piston. The limiting cases 
R-l-i-O,Y.-w were studied and the case of a monoatomic gas x= VI, though only a single 
pair of complex conjugate roots, which in /12/ was regarded as the roots of smallest modulus, 
was determined for the latter value of x. 

Below we give the results of a more detailed study of (4.2). A program for the numerical 
integration of system (2.3) with the Cauchy data (2.4) was written in order to compute the 
roots of this equation. In the course of solving probl.em (2.3), (2.4) we differentiated it 
with respect to z, and then integrated the result. Although the numerical integration was not, 
for various reasons, carried out to very small values of n, nevertheless the use of three 
subsequent terms in the asymptotic q-0 expansions (2.5) for plr and ~fir gave the constants 

CL!, Cpr a+ and d&Ida with sufficient accuracy. 
Using Newton's method to compute the roots of (4.2) we 

found that within the range of variation of I, (4.2) has 
pairwise complex conjugate roots only. Fox x=*.4 the 
first five roots of (4.21 axe: -0.779 f~O.582; -0.835 +i2.651; 
-0.857 + i4.626; -0.863 + i6,594; -0.865 +i8.560. Computing the 
roots of (4.2) for x =)/a we found that the 'root 2' 

0.907 +i2.467 [12I is the second smallest in modulus and the 
root z = -0.7QO+ i0.743 is the smallest in modulus. The 
dependence of the real and imaginary part of this root on 
x is shown in the figure by the solid line. 

We will complete the construction of the symmetrical 
solution by giving expressions for the second-appxoximation 
functions satisfying the conditions of matching the expansions 
(2.2) and (3.31, and the symmetxy conditions (4.1) 

The above relations use the Kmex function M(u, b, E) fill which represents the solution 
of a degenerate hypexgeometric equation. A solution of the equation for urtr satisfying the 
boundary conditions formulated above, can be obtained using the method of varying the constants, 
just as in /3/. The functions vvrrrpan are found from (4.3) with help of the algebraic rela- 
tions. 

5. Antisymnetric perturbations. We shall now consider the problem of hypersonic 
flow past an asymmetric profile. In this case the flow will be described, as t-+m, by 
a set of symmetric and antisymmetric perturbations of the solution /l/. The second and third 
approximation functions corresponding to antisymmetric perturbations satisfy the following 
conditions at the centre of the wake: 

&2g (0) =I + (0) = p22 (0) = z&2 (0) = d+ (0) - Pas (0) = 0 (5-l) 

The last equation of f5,l) and the first formula of (3.21 together yield the following 
equation for determining the constants z corresponding to the antisymmetxic perturbations: 

cp (z, 4 = 0 (5.2) 
The first five complex roots of (5.2) have the form -0.823 + 12,211; -0.855 f i4.188; 
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-0.802 + i6.157; -0.865 + i8.123; -0.866 + i10.088 ix = 1.4). The dependence on x of the real 
and imaginary parts Of the root with the Smallest modulus iS shown in the figure by the dashed 
line. 

Equation (5.2) also has two real roots in the range of values of z in question. The 
first root I- -1/a describes hypersonic flows in which the streamline profile is acted upon 
by a lift P,. The flow were studied in detail in /3/ where it was shown that in this case the 
constant C, is proportional to the lift and can be determined, provided that Fv is known. 
The second real root of (5.2)~~ -*/a describes the antisymmetric perturbations generated in the 
basic solution /l/ by changing the variable g +U+ AY(AV is a constant). Indeed, carrying 
out this substitution and expanding the flow parameters in a Taylor series up to terms linear 
in A%', we obtain the correction terms of order ~"~3. 

Analogous perturbations, albeit the symmetric ones, can be obtained by making the sub- 
stitution z-t+ Ax or C-C-i- AC, ACNi in the basic solution /l/. The perturbations with 
powder index z==.-1 and L=O correspond to the first and second substitution respectively. 
Both values of I satisfy (4.2), but fall outside the range of admissible values of a (in fact, 
they form the end points of this interval). In all cases we have t= --1,--YI,O and the 
second-approximation functions are expressed in terms of the first-approximation functions and 
their derivatives. 

Let us now write expressions for the second-approximation functions satisfying the con- 
ditions of matching with the outer region and the symmetry conditions (5.1) 

The functions up,, and pu are found from (5.3) using the final relations, and solution 
of the equation for vxrr can be constructed using the method of varying the constants. 

In conclusion we note that the region of the wake plays a passive role in forming free 
perturbations, since the constants z are found, in fact, from the solution of the problem 

(2.3), (2.4) describing the flow in the outer region. 
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